
2 I E E E  S O F T W A R E J a n u a r y / F e b r u a r y  2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0  ©  2 0 0 1  I E E E

engineering is still a first-generation field,
some of its basic ideas are widespread and
reach back to practices in industrial design2

and the “golden rules” of John D. Gould
and Clayton Lewis.3 The key principles in-
clude: the analysis of a product’s intended
context of use (user skills and needs, task
requirements, and physical, social, and or-
ganizational context) at the beginning of
development; user participation throughout
the development process; early prototyping;
usability evaluation; and continuous revi-
sion based on evaluation data.4 As the
field’s methods have evolved, they have
changed the concept of usability from a
narrow product-oriented quality attribute
to the broad concept of quality of use, that
is, “that the product can be used for its in-
tended purpose in the real world.”5

However broad the latest definition of
usability is, it recently acquired a new asso-
ciate, the so-called joy of use. The notion of

joy of use is instantly appealing, though its
actual meaning is hard to grasp. In 1997,
Bob Glass said, “If you’re still talking about
ease of use then you’re behind. It is all
about the joy of use. Ease of use has become
a given—it’s assumed that your product will
work.” However, joy of use is extremely
hard to define. As Glass said, “You don’t
notice it, but you’re drawn to it.”6

The way the term joy of use is employed
in general computer and human–computer-
interaction literature reveals three perspec-
tives on the issue: 

■ Usability reductionism supposes that joy
of use simply results from usable soft-
ware and that the answer to the ques-
tion of how to design for enjoyment is
already known. The only problem is
how to put usability engineering into
practice. So, joy of use appears to be just
a natural consequence of excellent us-

focus
Engineering Joy

Marc Hassenzahl, Andreas Beu, 
and Michael Burmester, User Interface Design GmbH

Joy of use has
become a
buzzword in
user interface
design although
serious attempts
at defining it
remain sparse.
The authors
propose
systematic
methods of
taking into
account one of
its main
determinants,
hedonic quality,
and its complex
interplay with
usability and
utility as a step
toward truly
engineering the
user experience.

O
ver the last 30 years usability has become an acknowledged
quality aspect of a wide variety of technical products, ranging
from software to washing machines. The concept of usability
has been accompanied by the assumption that usability can 

be engineered.  Clearly, the aim of usability engineering is to devise
processes to assure that products are usable.1 Although usability 

usability



ability. This perspective discounts the
qualitative differences between simply
doing a job and enjoying doing a job.

■ Design reductionism reduces joy of use
to a quality that graphical and industrial
designers add to software. Designers
“possess the [..] skills that combine sci-
ence and a rich body of experience with
art and intuition. Here is where ‘joy’
and ‘pleasure’ come into the equation:
joy of ownership, joy of use.”7 This per-
spective assumes that joy of use is con-
cerned more with superficial than with
deeper qualities, such as interaction
style and functionality. Therefore, it
fails to acknowledge the complex inter-
play of visual, interactional, and func-
tional qualities.

■ Marketing reductionism reduces joy of
use to a simple marketing claim. This
opinion is comparable to the percep-
tion of usability at its advent: user-
friendliness. It is mainly a claim with
no substance.

None of these perspectives seems satisfac-
tory. Given that our aim is to design enjoy-
able software systems, we should take the
analysis of joy of use as seriously today as
we took ease of use yesterday.  

Why consider enjoyment in
software design?

The most basic reason for considering
joy of use is the humanistic view that enjoy-
ment is fundamental to life. Glass said, “I
believe that products of the future should
celebrate life! They should be a joy to use. I
predict that joy of use will become an im-
portant factor in product development and
product success.”8

Although some might readily agree with
this view, others object on the grounds that
there is a radical difference between leisure
and work. The former calls for idle enjoy-
ment, the latter for concentrated work. Erik
Hollnagel has voiced a perspective against
connecting emotions (such as enjoyment)
with software design.9 He argues that hu-
man–computer interaction is basically
about efficiency and control, and that emo-
tions interfere with these attributes. For ex-
ample, one might make decisions based on
highly subjective, emotional criteria not
suitable for the rational work domain.

Somewhat cynically he states, “Affective in-
terfaces may serve a therapeutic purpose,
[to] make the user feel better.”9 We, on the
other hand, believe that the users’ well be-
ing always matters, especially in a work do-
main. Technology acceptance research has
demonstrated the positive effects of per-
ceived enjoyment or fun in work settings.
For example, in one study, when people en-
joyed a software product, their acceptance
and satisfaction increased.10 The impact of
user-perceived enjoyment on acceptance
(one important determinant of productivity)
nearly equaled that of user-perceived useful-
ness. In another example, providing an en-
joyable workplace for call center agents was
assumed to sustain the quality of customer
service and even increase it throughout the
day.11 So, in certain work positions (those
requiring “emotion work,” such as a call
center agent or hotel receptionist), enjoy-
ment might have an important effect on
work quality instead of solely serving a
therapeutic purpose. There are other cases
where joy or fun plays a role as a software
requirement, for example, where learning is
the main system function.12

Acknowledging the positive effects of en-
joyment does not necessarily imply knowl-
edge of how to design enjoyable software.
The primary question is: What do we actu-
ally have to do to design for joy of use? Ad-
vocates of usability reductionism would
answer: “Nothing! Just provide useful func-
tionality so the users can easily operate the
software.” This view emphasizes software’s
role as a tool for accomplishing a task and
focuses on task-related qualities (usability
and utility). It has been shown, however,
that hedonic qualities, that is, task-unrelated
qualities, can also play a role. For example,
including hedonic components (task-unre-
lated graphics, color, and music) increased
an information system’s enjoyment and us-
age.13 Similarly, the perception of hedonic
quality (task-unrelated aspects such as nov-
elty or originality) substantially contributed
to the overall appeal of software prototypes
for process control tasks14 and different vi-
sual display units—a standard CRT, a LCD
Flat-screen, and a computer image projected
on the desktop.15 Both studies demonstrate
that task-related and -unrelated quality as-
pects seem to compensate for each other
from the user’s perspective. In other words,

J a n u a r y / F e b r u a r y  2 0 0 1 I E E E  S O F T W A R E 3

The most basic
reason for

considering joy
of use is the
humanistic
view that

enjoyment is
fundamental to
life.Pullquote



extremely usable but tedious software might
be as appealing to a user as an extremely
unusable but thrilling one. Thus, exploring
and understanding the nature of hedonic
quality as a software requirement and, fur-
thermore, the dependence between hedonic
quality and task-related quality (utility and
usability) is a valuable road toward design-
ing for joy of use.

The driving forces behind hedonic
quality

The definition of hedonic quality as task-
unrelated quality is clearly too broad to
guide design. The driving forces behind the
scene might be more specific qualities such
as the need for novelty and change and the
need to communicate and express oneself
through objects.16

Though these may not be the only needs,
they exemplify the two-edged nature of the
forces behind hedonic quality. One part is
directed inward, concerning the individ-
ual’s personal development or growth; the
other part is directed outward, concerning
social and societal issues. If users perceive a
software product as potentially capable of
satisfying the need for personal growth and
status, it has hedonic quality. The percep-
tion of hedonic quality (or lack of it) will
affect the user’s preference for a given soft-
ware product. 

Need for novelty and change
Several areas of research have found evi-

dence of a general human need for novelty
and change. Daniel Berlyne, for example,
states that our central nervous system is de-
signed to cope with environments that pro-
duce a certain rate of stimulation and chal-
lenge to its capacities.17 We reach best
performance at a level of optimal excite-
ment, where neither overstimulation nor
monotony are present. The same notion ex-
ists in Mihaly Csikszentmihalyi’s optimal
experience concept.18 Optimal experience
or flow describes the state when somebody
is completely wrapped up in an activity. The
crucial determinant is the certainty that the
activity is challenging but attainable—it has
the optimal level of excitement. In a home
automation system evaluation study,19 we
found that individuals with a technical job
background reported the system to be of
low hedonic quality compared to individu-

als with a non-technical job background.
We suppose that technically educated indi-
viduals are more likely to possess knowl-
edge about existing home automation sys-
tem functionality, so they don’t find the
functionality excitingly new. Conversely, for
individuals with non-technical job back-
grounds, the system provided the means to
do things they could not do before. Indeed,
the focus during system design was on us-
ability and visual design rather than on
adding exciting new functionality. In this as-
pect, the experiment did not address the
technically oriented users’ need for chal-
lenge and stimulation. Strikingly, taking the
need for novelty and change into account
might unavoidably imply a reduction of us-
ability. Usability and joy of use might be
partially incompatible, because the former
requires consistency and simplicity, whereas
the latter requires surprise and a certain
amount of complexity.20

Designers need to introduce novelty with
care. User interfaces that are too novel and
unfamiliar are likely to evoke strong ade-
quacy concerns instead of hedonic quality
perceptions.21 What is needed is a way to
determine an optimal level of novelty.

Need to communicate and express oneself
through objects

This need addresses the social dimension
of using software. Robinson states that the
artifacts people choose to use can be inter-
preted as statements in an ongoing “dialog”
people have with other people in their envi-
ronment.22 We should not underestimate
the fact that using a product can evoke a
state of importance. Being an expert at
something that others do not understand,
being able to afford something that others
cannot afford, or possessing something that
others desire are strong driving forces. To
give an anecdotal example from our experi-
ence: The home automation system men-
tioned earlier had a user interface designed
to be as non-intimidating as possible in or-
der to encourage use by people with low
computer expertise. The strategy succeeded.
Usability tests with elderly, non-computer-
literate individuals showed an astonishingly
low number of severe usability problems.
However, one participant with a more so-
phisticated technical background com-
plained about the visual design. He said it

Designers need
to introduce
novelty with
care. User

interfaces that
are too novel

and unfamiliar
are likely to
evoke strong

adequacy
concerns
instead of

hedonic quality
perceptions.

4 I E E E  S O F T W A R E J a n u a r y / F e b r u a r y  2 0 0 1



looked like a “children’s book” and that his
friends would laugh at the system’s appar-
ent lack of professionalism. Thus, designers
need to develop user interfaces with status
needs in mind.

Techniques for engineering
hedonic quality

There is an explicit difference between
knowing that hedonic quality could play a
role in designing interactive systems and ac-
tively accounting for it. The latter requires
practical methodical support for both de-
sign (techniques for gathering and analyzing
hedonic requirements) and evaluation (met-
rics and techniques to measure hedonic
quality). As long as you understand their
advantages and disadvantages, the follow-
ing techniques can fit into a design process
for interactive systems. 

A semantic differential for measuring per-
ceived hedonic quality 
A well-known technique for measuring how
people perceive and evaluate objects is the se-
mantic differential. The differential we em-
ploy comprises seven pairs of adjectives that
characterize hedonic quality’s presence or ab-
sence, evaluated on a seven-point rating
scale. Each pair of extremes corresponds to
opposing adjectives, such as good–bad, inter-
esting–boring, or clear–confusing. Once the
participants rate the software on each char-
acteristic, we calculate a hedonic quality
“value” by summing or averaging the rat-
ings.  Figure 1 shows the semantic differential
we typically use for measuring hedonic qual-
ity14,15,19 (note that the verbal anchors used
in these studies were originally in German). 

We can apply the differential throughout
the design process for interactive systems,
from the evaluation of early mock-ups or
prototypes to fully operational systems. It
has various advantages: the usability engi-
neer does not require a special training for
using the differential, the participants can
quickly and easily fill it in, and the statisti-
cal analysis is straightforward. The charac-
teristics are high-level and deal with subjec-
tive user perceptions—that is the “quality is
in the eye of the beholder.” This makes the
differential applicable to various software
products without needing to adjust it to the
product’s special features.

The differential’s general applicability is

also one of its major disadvantages. Although
it can show the extent to which users regard a
piece of software as hedonic, the underlying
reasons (determinants of hedonic quality or
lack thereof) remain unknown. However, it
is exactly the understanding of the underly-
ing reasons that proves to be most impor-
tant for stimulating and improving a soft-
ware product design, especially when it
comes to a premature construct such as he-
donic quality. Another problem associated
with the nature of hedonic quality is the
solely operational definition that the differ-
ential provides. Without a theoretically
solid definition, there is always the danger
of missing an important facet of hedonic
quality. 

Repertory grid technique
A way to overcome the differential’s

problems is the repertory grid technique
(RGT).23,24 Georg Kelly assumes that indi-
viduals view the world (persons, objects,
events) through personal constructs. A per-
sonal construct is a similarity–difference di-
mension comparable to a semantic differen-
tial scale. For example, if you perceive two
software products as being different, you
might come up with the personal construct
“too colorful—looks good” to name the op-
posed extremes. On the one hand, this per-
sonal construct tells something about you,
namely that too many colors disturb your
sense of aesthetics. On the other hand, it
also reveals information about the products’
attributes. From a design perspective, we
are interested in differences between soft-
ware products rather than differences in in-
dividuals, so we focus on what the personal
constructs of a group of users might tell us
about the products they interact with.

RGT deals with systematically extracting
personal constructs. It consists of two steps:
construct extraction and product rating. For
construct extraction, we present individuals
with a randomly drawn triad from a soft-
ware products set, marking the “design
space” we are interested in. They must an-

J a n u a r y / F e b r u a r y  2 0 0 1 I E E E  S O F T W A R E 5

Outstanding
Exclusive

Impressive
Unique

Innovative
Exciting

Interesting

Second-rate
Standard
Nondescript
Ordinary
Conservative
Dull
Boring

Figure 1. Seman-
tic differential for
measuring hedo-
nic quality. 



swer in what way two of the three products
are similar to each other and different from
the third. This procedure produces a con-
struct that accounts for a perceived differ-
ence. The people then name the construct
(for example, playful–serious, two-dimen-
sional–three-dimensional, ugly–attractive)
indicating which of the two poles they per-
ceive as desirable (having positive value).
We repeat the process until no further novel
construct arises. The result is a semantic dif-
ferential solely based on each individual’s
idiosyncratic view. In the product rating
step, we ask people to rate all products on
their personal constructs. The result is an
individual-based description of the products
based on perceived differences.

Designers can apply RGT in various
forms throughout the user-centered design
process for interactive systems. A promising
application might be “diagnostic bench-
marking,” for example, comparing your
current, future, and competitors’ websites.25

We recently used RGT to explore the differ-
ences between design studies for control
room software resulting from a parallel de-
sign session.21 Table 1 shows some example
constructs from this study. These constructs
illustrate that the participants were con-
cerned about the adequacy of some of the
designs for a work domain. At least two dif-
ferent views became apparent: some partic-
ipants believed that control room software
must look serious (constructs 1–4), maybe
to induce trustworthiness (constructs 1 and
4) and perceived control (construct 3).
Other participants acknowledged the hedo-
nic quality of some designs (and the enjoy-
ment they derived from them) (construct 5)
but emphasized the dichotomy between
leisure and work (construct 5 and 6). This
illustrates the rich information that we can
obtain by RGT. In the study just mentioned,
we extracted 154 constructs from 10 partic-
ipants, covering topics such as quality of in-
teraction and presentation, hedonic quality,
and adequacy concerns (participants’ belief

about the extent to which the prototype is
suitable for the task).

RGT has a number of advantages: 

■ It is a theoretically grounded23 and struc-
tured approach, but nevertheless open to
each participant’s individual view. The
focus on individual (personally meaning-
ful) constructs is a clear advantage over
the semantic differential. The differential
can only measure what we define to be
hedonic quality. In other words, the par-
ticipants must use our constructs (the
scales we provide), regardless of whether
they are meaningful to them and cover
the topics relevant to them. 

■ RGT is more efficient than comparable
open approaches such as unstructured
interviews. Focusing on the personal
constructs as data denotes a significant
reduction in the amount of data to be
analyzed compared to transcribing and
analyzing unstructured interviews. This
is especially important in the context of
parallel design, or benchmarking, when
many alternatives are under study. 

■ Personal constructs have the potential
to be design-relevant. The whole ap-
proach is likely to generate different
views on software products, embodying
various individual needs and concerns
in relation to the product and its context
of use. This again is something the se-
mantic differential neglects. 

■ The basic method lends itself to the ap-
plication of almost any set of software
products.

The method’s main disadvantage is the
amount of effort invested. While we can use
the semantic differential as an add-on to a
regular usability test or as an online ques-
tionnaire, an RGT study is a self-contained
method in which the experimenter needs
considerable training. Another disadvan-
tage is that RGT relies on comparisons and
its application is therefore confined to situ-
ations where at least four alternatives are
available.

Shira interviewing 
Rainer Wessler, Kai-Christoph Hamborg

(University Osnabrück), and Marc Hassen-
zahl have recently developed a new analysis
method that avoids at least the multiple-al-

6 I E E E  S O F T W A R E J a n u a r y / F e b r u a r y  2 0 0 1

Table 1
Example constructs21

Pole A Pole B

1 Does not take the problem seriously Takes the problem seriously
2 Inappropriately funny Serious
3 Non expert-like Technically appropriate
4 All show, no substance Technology-oriented
5 Playful Expert-like
6 Has been fun Serious (good for work)



ternative problem associated with the RGT.
Structured hierarchical interviewing for re-
quirement analysis (Shira)26 is an interview-
ing technique that seeks to explore the
meaning of product attributes such as “con-
trollable,” “simple,” “impressive,” or “in-
novative” for a specific software application
in a specific context of use.

Shira starts from a pool of attributes cov-
ering usability aspects (such as “control-
lable”) and hedonic qualities (such as “in-
novative”). We first introduce participants
to a possible software application and its in-
tended context of use—for example, a home
automation system or software for writing
one’s diary. In a second step, we ask the par-
ticipants to select an attribute from the pool
that is important to them with regard to the
software (Figure 2 shows an example deal-
ing with the attribute “simple”). Starting
from the attribute, they then list software
features that would justify attaching that at-
tribute. By repeatedly answering questions
such as “what makes a home automation
system seem innovative to you,” they will
generate a list of features that contain con-
text and the attribute’s software-specific de-
terminants (for example, “user-friendly”
and “not patronizing”). The resulting list
comprises the context level. In the third
step, the participants must produce recom-
mendations for each entry in the context
level suggesting how the actual design could
address the feature (for example, “adaptive,
learning, intelligent system that works more
or less independently and requires little at-
tention from the user”). We call this the de-
sign level. The result is a hierarchical, per-
sonal model of attributes that are important
to the participants with regard to specified
software product, what these attributes ac-
tually mean to them, and how they can be
addressed by the design.

Shira is a systematic way to get in-depth
data and detailed insights into an individ-
ual’s expectations of a specified software
system. Its hierarchical representation facil-
itates getting a better idea of central and pe-
ripheral aspects (attributes, features, or de-
sign recommendations). In particular, Shira
has the power to gather hedonic require-
ments by using hedonic attributes as stimu-
lation. By integrating personal models into a
group model, we obtain a rich body of in-
formation about the system’s design space.

Shira is especially suited to gather infor-
mation at early stages of the design process
for interactive systems. However, it might
also be possible to evaluate software at a
later stage regarding how it fits the user’s
expectations.

Shira is still at an early development
stage. It is too early to assess advantages
and disadvantages. However, from our pre-
liminary experience with the technique, it
seems to provide detailed design-relevant
data in a structured form that facilitates in-
terpretation and integration of multiple per-
sonal perspectives.

U sability and utility are basically
about how well software supports
people in getting their jobs done.

However, task-unrelated qualities can play a
crucial role. Traditional usability engineer-
ing methods are not adequate for analyzing
and evaluating hedonic quality and its com-
plex interplay with usability and utility. The
techniques we have suggested might signifi-
cantly broaden usability engineering prac-
tices by shifting the focus to a more holistic

J a n u a r y / F e b r u a r y  2 0 0 1 I E E E  S O F T W A R E 7

Simple

User-friendly

Attribute level Context level Design level

Not patronizing

System remembers previous
interactions

System adapts to my habits

I only have to specify exceptions 
from the rule

Common sense (for example, 
system automatically excludes
Saturdays and Sundays from the 
daily morning wake-up call)

The system may remind me but
must not order me

I do not want to feel like the
system knows everything and
I know nothing

Figure 2. Portion of a
personal model gath-
ered by using Shira.



perspective on human needs and desires. In
the future, we might see usability engineer-
ing evolving toward more complete user ex-
perience design—one that encompasses the
joy of use. 

Acknowledgments
This article was partly funded by the German

Ministry for Research (BMBF) in the context of IN-
VITE (01 IL 901 V 8). See www.invite.de for further
information. We are grateful to Uta Sailer for her
helpful comments on an earlier draft of the article.

References
1. J. Nielsen, Usability Engineering, Academic Press,

Boston, San Diego, 1993.
2. H. Dreyfuss, Designing for People, Simon & Schuster,

New York, 1995.
3. J.D. Gould and C.H. Lewis, “Designing for Usability:

Key Principles and What Designers Think,” Comm.

ACM, vol. 28, no. 3, Mar. 1985, pp. 300–311. 
4. Human-Centred Design Processes for Interactive Sys-

tems, ISO-13407: 1999. 
5. N. Bevan, “Usability is Quality of Use,” Proc. HCI Int’l

95,  Lawrence Erlbaum Associates, Mahwah, N.J.,
1995 pp. 349–354.  

6. www.sun.com.au/news/onsun/oct97/page6.html (current
Dec. 00).

7. D.A. Norman, The invisible computer, MIT Press,
Cambridge, Mass., 1998.

8. B. Glass, “Swept Away in a Sea of Evolution: New
Challenges and Opportunities for Usability Profession-
als,” Software-Ergonomie ‘97. Usability Engineering:
Integration von Mensch-Computer-Interaktion und
Software-Entwicklung, R. Liskowsky, B.M.
Velichkovsky, and W. Wünschmann, eds., B.G. Teubner,
Stuttgart, Germany, 1997, pp. 17–26. 

9. E. Hollnagel, “Keep Cool: The Value of Affective Com-
puter Interfaces in a Rational World,” Proc. HCI Int’l
99, vol. 2, Lawrence Erlbaum Associates, Mahwah,
N.J., 1999, pp. 676–680. 

10. M. Igbaria et al., “The Respective Roles of Perceived
Usefulness and Perceived Fun in the Acceptance of Mi-
crocomputer Technology,” Behaviour & Information
Technology, vol. 13, no. 6, 1994, pp. 349–361.

11. N. Millard et al., “Smiling through: Motivation at the
User Interface,” Proc. HCI Int’l ’99, vol. 2, Lawrence
Erlbaum Associates, Mahwah, N.J., 1999, pp.
824–828. 

12. S.W. Draper, “Analysing Fun as a Candidate Software
Requirement,” Personal Technology, vol. 3, no. 1,
1999, pp. 1–6.

13. N. Mundorf et al., “Effects of Hedonic Components
and User’s Gender on the Acceptance of Screen-Based
Information Services,” Behaviour & Information Tech-
nology, vol. 12, no. 5, 1993, pp. 293–303.

14. M. Hassenzahl et al., “Hedonic and Ergonomic Quality
Aspects Determine a Software’s Appeal,” Proc. CHI
2000 Conf. Human Factors in Computing, ACM Press,
Addison-Wesley, New York, 2000, pp. 201–208. 

15. M. Hassenzahl, “The Effect of Perceived Hedonic Qual-
ity on Product Appealingness” Int’l J. Human–Com-
puter Interaction, submitted for publication. 

16. R.J. Logan et al., “Design of Simplified Television Re-
mote Controls: A Case for Behavioral and Emotional
Usability,” Proc. 38th Human Factors and Ergonomics
Soc. Ann. Meeting, 1994, pp. 365–369. 

17. D.E. Berlyne, “Curiosity and Exploration,” Science, vol.
153, 1968, pp. 25–33. 

18. M. Csikszentmihalyi, Beyond Boredom and Anxiety,
Jossey-Bass, San Francisco, 1975.

19. M. Hassenzahl et al., “Perceived Novelty of Func-
tions—A Source of Hedonic Quality,” Interfaces, vol.
42, no. 11, p. 11, 2000. 

20. J.M. Carroll and J.C. Thomas, Fun. SIGCHI Bull., vol.
19, no. 3, 1988, pp. 21–24. 

21. M. Hassenzahl and R. Wessler, “Capturing Design
Space from a User Perspective: The Repertory Grid
Technique Revisited,” Int’l J. Human-Computer Inter-
action, vol. 12, no. 3/4, pp. 441–459.

22. L. Leventhal et al., “Assessing user interfaces for diverse
user groups: evaluation strategies and defining charac-
teristics,”  Behaviour & Information Technology, vol.
15, no. 3, 1996, pp. 127–137, and references therein.

23. G.A. Kelly, The Psychology of Personal Constructs,
vols. 1–2, Norton, New York, 1955 (reprinted by Rout-
ledge, 1991).

24. F. Fransella and D. Bannister, A Manual for Repertory
Grid Technique, Academic Press, London, 1977.

25. M. Hassenzahl and T. Trautmann, Analysis of Web
Sites with the Repertory Grid Technique, submitted for
publication.

26. R. Wessler et al., Orientation, Understanding and Deci-
sion-Making—a User-Centred Approach to Guide the
Design of Prototypes, submitted for publication.

8 I E E E  S O F T W A R E J a n u a r y / F e b r u a r y  2 0 0 1

About the Authors

Marc Hassenzahl studied psychology and computer science at the Technical University,
Darmstadt. For the past five years he has worked as a freelance usability consultant for clients
such as the Federal Statistical Office in Germany and as a usability engineer at Siemens Corpo-
rate Technology – User Interface Design. Currently, he is working at User Interface Design
GmbH in Munich. He is involved in projects ranging from usability evaluation of automation
software to user interface design for computer chip design tools. His research interests are ap-
pealing user interfaces, especially hedonic qualities, and related new analysis and evaluation
techniques. Contact him at User Interface Design GmbH, Dompfaffweg 10, 81827 Munich, Ger-
many; marc.hassenzahl@uidesign.de.

Andreas Beu studied mechanical engineering at the University of Stuttgart. In the past
six years, he has led numerous user interface design projects that have employed a user-cen-
tred design approach, mainly for complex industrial applications. He worked as a usability en-
gineer at GSM GmbH, a spin-off company of the Fraunhofer-Institute for Industrial Engineer-
ing (IAO) in Stuttgart, and at Siemens Corporate Technology – User Interface Design. Since
April 2000, he is working at User Interface Design GmbH in Munich. He is interested in user
interface design for small displays, wearable computers, and augmented reality systems. Con-
tact him at User Interface Design GmbH, Dompfaffweg 10, 81827 Munich, Germany;
andreas.beu@uidesign.de.

Michael Burmester studied psychology at the University of Regensburg in southern
Germany. He started his career as a researcher at the Fraunhofer Institute for Industrial Engi-
neering (IAO) in Stuttgart. In 1997, he joined Siemens Corporate Technology – User Interface
Design as a usability consultant and researcher for usability engineering. Since March 2000, he
has been head of the Munich office of User Interface Design GmbH, a software and usability
consultancy company. Results and experiences of his research and consultancy work are pub-
lished in over 40 scientific and technical papers. Contact him at User Interface Design GmbH,
Dompfaffweg 10, 81827 Munich, Germany; michael.burmester@uidesign.de.


